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Fragmentation of grains in a two-dimensional packing?
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Abstract. A numerical model of fragmentation of a two-dimensional granular medium under pressure is
investigated. The fragmentation process is found to be strongly dependent on the type of force used as the
criterion for breaking the grains. The fragmentation mode affects the process less dramatically. There is
a power-law divergence in the pressure when the medium approaches the full packing limit, (εc − ε)

−2.0.
Both log-normal and power-law fragment-size distributions are found. Gravity is demonstrated to be an
important factor.

PACS. 83.70.Fn Granular solids – 46.30.Nz Fracture mechanics, fatigue, and cracks – 02.70.Ns Molecular
dynamics and particle methods

1 Introduction

The process of fragmentation of a set of particles into
smaller ones by pressing them against each other is of
vast technological importance [1,2]. Also many natural
processes ranging in size from the collisional evolution of
asteroids to the formation of dust, belong, at least to some
degree, to this category. Consequently, there have been
many investigations devoted to this subject (good reviews
are given in Refs. [2–4]). Much interest has been focused
on understanding the origin of the fragment-size distribu-
tion [2–13]. Both log-normal and power-law distributions
appear commonly in experimental and theoretical studies.
The origin of the log-normal size distribution is quite easy
to understand. If all grains and fragments break always in-
dependently of each other and with a more or less constant
probability per unit time, then, after a long time, the num-
ber of breakings per unit mass will have a normal distri-
bution. If at each breaking, a fragments are formed, then
the number, c(i), of fragments that have gone through i
breakings is given by

c(i) =
N0a

i

√
2π

exp[−(i− i)2/2], (1)

where N0 is the original number of particles, and i the
average number of breakings per mass-unit. The reduction
in the particle radius will typically be ri = a−i/2r0. By
combining this with equation (1) a log-normal distribution
is obtained. In nature, log-normal size distributions are
found in both boulder fields and soils [14].
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The other commonly appearing type of size distribu-
tion is the power-law distribution. An interesting feature
of power-law fragment size distributions is that it is pos-
sible to fill the entire space with fragments even if they
have a ‘problematic’ shape like circles. This can be done
by choosing the right exponent and arranging the frag-
ments on a fractal set [15]. For circles in two dimensions
the exponent of one possible solution is close to −2.3 (i.e.
n(r) ∝ r−2τ , where 2τ = df + 1 and df ≈ 1.3 is the
fractal dimension of Apollonian packing). It has also been
suggested that a power-law size distribution is a result
of self-organized criticality [5]. In experiments, power-law
distributions commonly result from highly energetic im-
pacts such as explosions [2], but also ongoing fragmenta-
tion can lead to a power-law size distribution [3].

In this paper we investigate a numerical two-
dimensional model for the fragmentation of a granular
medium under pressure. We model the grains and frag-
ments as elastic circular discs. At the begining of a
simulation a few grains are placed at random in a two-
dimensional box. If the grains overlap they repell each
other with a force F = E(ri + rj − δs)1.5/

√
1/ri + 1/rj

[16], where ri, rj are the radii of the overlapping grains,
δs the distance between the centres of the grains, and E
Young’s modulus. The walls of the box are also elastic.
The pressure is increased by decreasing the size of the
box. The grains move according to Newton’s equations of
motion. Energy is being dissipated by introducing an ex-
tra, ‘viscous’ dissipation term in the equations of motion
[17]. That is, a force proportional to the velocity is slowing
down a particle.

Choosing the rules according to which the grains break
is far from trivial. First, the type of load that causes
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Fig. 1. Two fragmented systems containing roughly 500 frag-
ments. (a) Breaking rule (B) and fracture mode (I). (b) Break-
ing rule (B) and fracture mode (II). E = 5000, N0 = 50,
r ∈ [0.25, 0.75], M ≈ 40.

fragmentation has to be set. In this paper we report simu-
lation results with two different types of fragmentation cri-
teria; (A) a threshold value for the pressure on a grain, and
(B) a threshold value for the largest compressive force at
the contacts of a grain. The first type of load is a quite nat-
ural choice as the pressure is the total compressive force
on a grain. The second type is more delicate. If the grains
are made of a stiff material, and their surfaces are smooth,
then the contacts between grains will be almost pointlike.
This leads to a high stress concentration at these points.
For a brittle material it is known that high stress con-
centrations are the origin of crack propagation [18], which
leads to fragmentation.

The second rule that has to be set is the fracture mode,
i.e. how an individual particle fragments. Obviously, the
total mass has to be conserved during fragmentation. In
order to handle the fragments in a similar way as the
grains we want to model also all fragments as circular
discs. The problem with choosing a good fracture mode is
then that; (1) the number of fragments at each breaking
should be kept low so that many breakings can be made
in each simulation, (2) the fragments should be chosen so
that they can be packed in such a way that local pressure
decreases at a breaking, and (3) the breaking mechanism
should at least to some extent mimic the real event. To
simultaneously satisfy all these three critera is obviously
impossible. Instead of doing a compromise, however, we
use two different criterions. In the first (I) we simply split
a grain in two equal-size fragments. This criterion violates
(2) and induces strong, unphysical local pressures. In the
second (II) we pack 12 fragments of three different sizes
into the area of the broken grain and place the rest of the
mass just outside in the ‘pockets’ between the surround-
ing grains. This criterion violates (1), but in most cases
satifies (2) (the local preasure can occasionaly increase a
little for a short time just after a breaking if the fragments
do not really fit in the pockets). Criterion (3) is also rea-
sonably well satisfied.

The results of two simulation runs, starting with 50
grains with radii uniformly distributed between 0.25 and
0.75, and fragmenting up to 500 particles are shown in
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Fig. 2. Fragment size distributions of the systems obtained
with mode (I) and mode (II), respectively. Results are shown
for 500 and 1000 fragments. Log-normal distributions are fitted
for mode (I). n(r) = 0.055 exp[−(ln(r) + 3.05)2/0.43] for 500
fragments and n(r) = 0.085 exp[−(ln(r)+3.34)2/0.33] for 1000
fragments.

Figure 1. Breaking rule (B) was used, and Figures 1a and
1b are results of fracture modes (I) and (II), respectively.
The most striking difference between the two modes is
that some grains remain unbroken using mode (II) (the
largest circles in Fig. 1b). This effect is rather easy to un-
derstand. Using mode (II) the radii are decreasing fast,
which means that small fragments will surround unbro-
ken grains. When this happens the force on a unbroken
grain will be distributed among several contacts, which
means that none of them will be large enough to break
the grain. In spite of this, the fragment size distributions
resulting from Figures 1a and 1b (averaged over many
simulation runs though) does not differ very much from
each other. The general shape of both distributions is log-
normal (Fig. 2) and the mean fragment sizes decrease
roughly in a similar fashion for the two modes. Using
mode (I) and starting with 50 grains with a mean size
of 0.5 results in mean sizes 0.14 and 0.10 for 500 and 1000
fragments, respectively. For mode (II) the mean sizes are
0.12 and 0.09.

To investigate the development of the ‘hydrodynamic’
pressure (P ) in the system, we define strain as ε = (L0 −
L(t))/L0, where L0 is the original length of the simulation
box, and L(t) the time-dependent length. Let us define εc
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Fig. 3. The pressure P as a function of ε for systems similar to
the one in Figure 1b. Individual breakings of grains appear as
sharp pressure drops. For comparison a function proportional
to (1− ε/εc)−2 is also plotted. (a), (b) Linear and logarithmic
scale, respectively.

as εc = (L0 −
√
M)/L0, where M is the total surface

area (or mass) of the grains and fragments. P (t) is shown
as a function of ε(t)/εc in Figure 3 for criterion (B) and
mode (II). At the end of these simulations (i.e. at ε/εc ≈
0.98) there are about 8–9% of voids and the ‘overlap’ of
circles is less than 0.5%. The pressure seems to diverge as
ε approaches εc, although there is a cutoff as the particles
are elastic. This divergence is approximately of the form
(1 − ε/εc)−2 (full lines in Fig. 3). The origin of the value
of this exponent is, however, not known to us.

Up to this point we have not investigated breaking cri-
terion (A). Fragmentation with this criterion is dominated
by an ’instability’ in the sense that smaller particles break
easier than large ones. An indication of this instability was
found by investigating the pressure (without breaking) as
a function of grain size [19]. For a bidisperse grain size
distribution it was found that the average pressure does
depend on the radius of a grain, but the high pressure tail
of the distribution was found to be completely dominated
by small grains. Thus we expect that once fragmentation
is initiated at one spot it will continue breaking the ever
smaller fragments at that location. This is indeed what
is found in the simulations with both modes (I) and (II)
(Fig. 4). The fragment size distribution can easily be es-
timated in this process. If each breaking results in a frag-
ments of equal size, then the radius of a fragment after i

Fig. 4. Detailed picture of the breaking locations in two sys-
tems using breaking rule (A). (a) Fracture mode (II) and (b)
fracture mode (I). No fracture occured outside the pictures.

breakings will, as above, be ri = r0a
−i/2. If we now assume

that only the smallest fragments can break (there can,
however, be many with the same size), and that a frac-
tion p of them will break, then the number of fragments
resulting from the i:th breaking will be (1 − p)N0(pa)i.
Using relation between ri and i (given above), the num-
ber of fragments with radius between r and r+ δr can be
obtained. The result is

n(r) =
(1− p)N0

√
a

r0(
√
a− 1)

(r/r0)−[2 ln(p)/ ln(a)+3]δr. (2)

If, strictly, only the smallest fragment (i.e. just one) can
break, then only one fragment out of a can continue
fragmenting. This means that p = 1/a, which leads to
n(r) ∝ 1/r. If, on the other hand, almost all fragments
continue to break (i.e. p → 1), then n(r) will be propor-
tional to r−3. The exponent decreases continuosly from
−1 to −3 as p increases from 1/a to 1.

In order to test equation (2) we did simulations start-
ing with 10 fragments of nearly equal size and runing
up to 150 fragments using both modes (I) and (II). The
instability occured in both cases. In Figure 4 we show
detailed pictures of the breaking locations for the two
modes. No fragmentation occured outside the figure ar-
eas, and the resulting fragment size distributions were of
the form 1/r in both cases. In order to find other expo-
nents we tried varying different parameters (like the stiff-
ness of the grains, the strain rate, and the original size
distribution). The same fragments size distribution, 1/r,
appeared, however, always. We even tried introducing ran-
dom fragmentation threshold, but no change was seen in
the size distribution. It was only with the introduction of
gravity that the distribution changed. There is a physical
explanation to this; without gravity the small fragments
remain more or less at the breaking location, which leads
to decreasingly smaller fragments being crushed between
large unbroken grains (Fig. 4). In the presence of gravity,
however, the small fragments fall between large fragments
which leads to rearrangements that affect the final frag-
ment size distribution. In Figure 5 we show a system of
50 grains broken into roughly 800 fragments in the pres-
ence of gravity. Also a detailed picture of a fragmentation
location is displayed. The contrast to Figure 4 is obvious.
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Fig. 5. 800 fragments broken using breaking rule (A) and
fracture mode (II) under the influence of gravity. (a) The entire
system at the end of a simulation with all grains and fragments
located at the bottom of the simulation box. (b) A detailed
picture of a breaking location.
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Fig. 6. The fragment size distributions of the systems of Fig-
ures 4 and 5. A function of the form 1/r is fitted in the case
of no gravity and a function 1/r2 is fitted to the distribution
obtained under gravity.

Finally, in Figure 6 we compare the fragment size distribu-
tions of Figures 4 and 5. The fitted lines are functions pro-
portional to 1/r and 1/r2, respectively. It is interesting to
notice that the fragment size distribution obtained under
gravity (i.e. n(r) ∝ 1/r2) is fairly close to n(r) ∝ 1/r2.3

of an Apollonian packing [15].

In summary, we have demonstrated that the force used
in the breaking criterion is crucial to the fragmentation of
a granular medium under pressure. With a fracture thresh-
old for the largest contact force, log-normal fragment size
distributions are obtained. If the fracture criterion is a
threshold value for the pressure on a grain then the pro-
cess is unstable and results in a size distribution of the
form 1/r in the case of no gravity. If gravity is present
then rearrangements of particles lead to much more ef-
ficient packing and fragment-size distributions similar to
those found in Apollonian packing appear.

The authors acknowledge useful discussions with O. Tsoungui,
S. Roux and J.C. Charmet.
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